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The instability of flows around hump and dip imperfections is

investigated. The mean flow is calculated using interacting boundary

layers, thereby accounting for viscous/inviscid interaction and

separation bubbles. Then, the two-dimensional linear instability of
this flow is analyzed, and the amplification factors are computed.

Results are obtained for several height/width ratios and locations. The
theoretical results have been used to correlate the experimental results

of Walker and Greening. 1 The observed transition locations are found to

correspond to amplification factors varying between 7.4 and 10,

consistent with previous results for flat plates. The method accounts

for Tollmien-Schlichting waves, the shear layer instability, and their

interaction. Separation is found to significantly increase the

amplification factor.

I. INTRODUCTION

The performance of natural laminar flow (NLF) airfoils is

critically dependent on the location of transition, which may be

strongly influenced by surface imperfections. Although modern metal and

composite manufacturing techniques can provide smooth surfaces that are

compatible with NLF, manufacturing tolerance criteria are needed for
other unavoidable surface imperfections. These imperfections include

waviness and bulges, steps and gaps at junctions, and three-dimensional

roughness elements such as flush screw head slots and incorrectly
installed flush rivets. Other unavoidable discontinuities arise from

the installation of leading edge panels on wings, nacelles, and

empennage surfaces and the installation of access panels, doors, and
windows on fuselage noses and engine nacelles 2-4. Because

discontinuities cannot be avoided, a guide is needed for manufacturing

tolerances. The guide is not related to the drag generated by these
discontinuities, but it is related to their allowable sizes so that
laminar flow can be maintained. The mechanisms by which these

imperfections cause transition include amplification of Tollmien-

Schlichting waves, Kelvin-Helmholtz instability (for separated flows),

amplification of crossflow vorticity, Gortler instability, enhancement

of receptivity of Freestream turbulence and acoustic disturbances, and
any interaction between two or more of these mechanisms 4-9.

Walker and Greening I made wind tunnel experiments to determine the

effect of two-dimensional smooth bulges and hollows on the transition of

the flow over a flat plate. They used surface tubes to determine the

location of transition from laminar to turbulent flow. Their bulges and

hollows were mounted on one side 9_ a smooth flat aluminum plate, having
an elliptic leading edge. Hislop TM carried out similar experiments for

narTgw spanwise surface ridge corrugations on a flat plate. Walker and
Cox_ made wind tunnel experiments to study the effect of spanwise

corrugations on an airfoil. These experiments were made for three forms

of narrow corrugations (flat, arch and wire) situated in the laminar
boundary layer of a large symmetric airfoil (EQH 1260 section), mounted

at zero angle of attack.
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Fage 5 collected the three previous works 1,10-11 and established

criteria for the critical heights of these imperfections that cause
transition from laminar to turbulent flow. He found out that the flow

conditions near a corrugation which affect transition are associated

with a separation of the laminar boundary layer from its surface
Carmichael6-8 also developed empirically based criteria for allo_able

waviness and roughnesses that cause either laminar separation or

amplification of Tollmien-Schlichting waves. His criteria are for

allowable single and multiple bulges or sinusoidal waviness for both
swept and unswept wing surfaces. His experiments include the influence

of compressibility, suction, pressure gradients, multiple imperfections,

and wing sweep. The flight experiments of Holmes, Obara, Martin and
Domack _ demonstrate the strong influence of shapes of steps on the

transition location and hence on the allowable heights of such

imperfections. They found that by rounding a foward-facing step, the
transition Reynolds number increases from 1800 to 2700. Carmichael's

criteria are based on experimental results for waves located more than

25-percent chord downstream of the leading edge and hence they will

underpredict allowable imperfections in the leading edge region and

overpredict allowable i_perfections in regions of unaccelerated flows.
Klebanoff and Tidstrom used a spanwise trip wire as a roughness

element, which causes local upstream and downstream separations, the

latter extending forty to fifty times the height of the wire before
reattachment to the wall.

Inspite of all these investigations, an understanding of the

physics of the instability of flows around surface imperfections is

still lacking. As a first step toward such an understanding, this work

investigates the influence of a two-dimensional hump or dip on the two-

dimensional stability. This work uses a combination of linear stability

theory and the exp(N) criterion that has proven to be a valuable tool

for correlating transition and for evaluating natural laminar flow as
well as laminar flow control concepts. Since linear stability of

parallel as well as nonparallel incompressible and compressible flows is

well established, the major task in evaluating the influence of

imperfections is an accurate prediction of the mean flow.

For smooth surfaces, one can use a conventional boundary-layer

formulation to solve for the mean flow over swept and unswept wing

surfaces. However, conventional boundary-layer formulations cannot

predict flow over surfaces with imperfections, such as suction strips

and slots, waviness and bulges, steps and gaps at junctions, and three-

dimensional roughness elements because of the strong viscous/inviscid

coupling and flow separation. Instead, one needs to use a triple-deck

formulation, an interacting boundary-layer formulation, or a Navier-
Stokes solver. All these approaches account for the viscous/inviscid

interaction as well as separation bubbles, but Navier-Stokes solvers are

very expensive compared with triple-deck and interacting boundary-layer

formulations. In this work, we use an interacting boundary-layer

formulation, which already had been used to compute compressible as well

as incompressible flows over smooth steps, wavy surfaces and humps,

convex and concave corners, suction or blowing slots, and finite-angle

trailing edges. In most of these applications separation bubbles and
upstream influence exist and comparisons with solutions of the Navier-
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Stokes equations anchor experiments had1§hown good agreement. _eyzes,
Cousteix and Bonnet _, Vatsa and Carter _4, and Davis and Carter _ used

interacting boundary-layer theory to analyze separatio@=bubbles near the
leading edges of airfoils. Davis, Carter and Reshotko _u developed an

interacting boundary-layer technique for the calculation of transitional

separation bubbles over1_nfinite swept wings; the results are in good

agreement with Horton's _I detailed experimental data for separated flow
over a swept plate.

The purpose of this work is to study the effect of a two-

dimensional roughness element or a two-dimensional surface waviness,

represented by a hump or a dip, on the two-dimensional stability of

boundary layers over flat plates. Quartic humps with different sizes

and locations are studied first. Then, the theory is used to correlate

the experimental data of Walker and Greening.

2. MEAN FLOW

The two-dimensional incompressible laminar boundary layer over the

plate and the h_p1_s determined by solving the interacting boundary-
layer equations _°,_. These equations account for upstream influence
through the interaction of the viscous flow with the inviscid flow

outside the boundary layer. Moreover, they are also capable of
capturing separation bubbles without difficulties. Solutions are

obtained by using a finite-difference method in which the grid spacings

acknowledge the scalings predicted by the triple-deck theory in the
interaction region.

Figure 1 shows a small symmetric hump of height h* and width 2b*

whose center is located at x_. We introduce dimensonless variables using

L* and U*, where L* is the distance from the leading edge to a reference
point, a_ reference quantities. In terms of dimensionless variables,

the hump shape is given by

y=y___, h= _ f(_) (1)
L L

where

X -X X-X
m m

- * - b
b

We present numerical results for a quadratic hump given by

2 2

(I - _ ) if -<i
=

o if I I>I

(2)

(3)

and the Walker and Greening hump

2 3

1- 3_ + 2 I_I if I_I -< i

:
0 if I_I > i

(4)
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Figure 2 shows the variation of the height of a hump, corresponding
to h = 3 in triple-deck variables, and the resulting displacement

thickness. Figure 3 shows the distributions of the skin friction and

pressure coefficients for the hump shown in Fig. 2. A small separation

bubble is formed on the lee side of the hump.

Tables 1 and 2 show some of the mean-flow properties for the humps

and dips of Walker and Greening. The velocity u outside the boundary

layer for the undistorted surface varies from 15.9 m/sec (53.0 ft/sec)

to 28.5 m/sec (95.0 ft/sec) for the humps, and from 18.57 m/sec (61.9

ft/sec) to 25.47 m/sec (84.9 ft/sec) for the dips. The maximum

transverse dimension h* varies from 0.75 mm (0.03 in) to 1.75 mm (0.07

in) for the humps and from 1.425 mm (0.057 in) to 1.675 mm (0.067 in)

for the dips. The observed transition length is denoted by LT; it is
measured from the leading edge to the observed transition location. The

Reynolds numbers at the middle of the humps or dips Rm and,at the

transition location RT are based on the reference length a so that

LT
Rm = (Re) ½, RT = (--_ Re) ½ (5)

L
All of the previous quantities were calculated directly from the

experimental data given by Walker and Greening, but the streamwise
extents of the separation bubbles are expressed as the difference in the
Reynolds numbers at separation and reattachment; that is, aR =
R(reattachment) - R(separation) and AR is calculated using the
interacting boundary-layer code. Except for hump No. I all the humps
and dips in Tables i and 2 have separation bubbles.

Figure 4 shows the variation of the streamwise velocity profiles

for hump No. 14. The First and the last velocity profiles are at

locations away from the hump; they are essentially Blasius profiles.

3. STABILITY ANALYSIS

We consider the two-dimensional spatial quasi-parallel stability of

the basic state determined by the interacting boundary-layer code. To

this end, we superimpose on it a two-dimensional unsteady disturbance.
Thus, we let

¼(x,y,t) = Q(y) + q(x,y,t) (6)

where q refers to the pressure p and the velocity components u and v in

the streamwise direction x and the transverse direction y, respectively.

Substituting the assumed flow into the Navier-Stokes equations,

subtracting the basic-flow quantities, and linearizing the resulting

equations, we obtain equations describing the disturbance. We consider

the case of spatial stability and determine the amplification rate

- :i' where ei is the imaginary part of the complex wavenumber _.

For a given U, m, and R, we determine _ and then calculate the N
factor from

R

N = - 2 _ _idR (7)
R
0
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where R is the Reynolds number corresponding to branch I of the neutral
stability curve.

Figure 5 shows the variation of the growth rate with streamwise

distance for the hump shown in Fig. 2. Shown also is the growth rate of

the Blasius flow at the same frequency. The presence of the hump first

increases the growth rate then it decreases the growth rate

and finally increases the growth rate again. The stabilizing and

destabilizing effects are consistent with the gradients of the pressure

distributions shown in Fig. 3.

The amplification of two-dimensional disturbances is the result of

a complex interaction of Tollmien-Schlichting waves and shear-layer

(laminar separation) instability as evident from Figs. 4 and 6. They

show the variation of the streamwise velocity profile and the

corresponding eigenfunction of the instability wave, respectively, with
distance along the plate. Ahead of the separation region, the

eigenfunction has a character typical of T-S waves with two peaks, a

large one at the critical layer and a small peak near the edge of the

boundary layer. In the separation region, the eigenFunctions develop a

third peak at the inflection point of the mean-flow profile. This peak
increases with distance from the separation point, achieves a maximum

which can be comparable to the peak at the critical layer, and decreases

to zero at the reattachment point. The effects of the shear-layer

instability are to increase the growth rates and the dangerous

frequency.

Table 3 shows the variations of the Reynolds number Rq at which N =

9 and the computed amplification factor NT at the experime6tally
measured transition location with_the dimensionless Frequency F for hump

No. 5 in Table 1. For F = 45x10 -b, the maximum value of N is 8.4. It6
is clear that the most dangerous frequency has shifted from F = 25x10-
For the Blasius flow to F = 37.5x10 -u for the disturbed flow. Moreover,

the maximum computed amplification factor at the experimental transition
location is 8.7.

Tables 4 and 5 summarize the computed results For all the hump and

dip configurations of Walker and Greening. They show the maximum

(maximized over all Frequencies) amplification Factor NT and its
corresponding frequency at the measured transition location. The values

of NT range from 7.4 to 10, consistent with previous results for flat
plates.

4. CONCLUSIONS AND RECO_ENDATIONS

An analysis is conducted of the effect of imperfections consisting

of humps and dips on the stability of incompressible flows over flat

plates. The mean flow is calculated using interacting boundary layers.

Linear quasiparallel spatial stability is used to calculate the growth

rates and mode shapes of two-dimensional disturbances. Then, the

amplification factor is computed. A search for the most dangerous
frequency is conducted based on an amplification Factor of 9 in the

shortest distance. Correlations a_e made with the transition experiment
of Walker and Greening using the e_ method.
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Based on the present investigations, it can be concluded that:

The e9 method gives a good estimate of the transition location.

e Increasing the size of the separation bubble, by increasing either

the height-to-width ratio or the freestream Reynolds number, causes
transition to occur sooner.

. In the separation bubble, the calculated growth rates of the
disturbances account for both the T-S and shear-layer
instabilities.

, The shape of a smooth hump or dip does not have a significant

effect on the growth rates.

e The geometrical factors of the imperfection that govern the

instability are:

a. the height-to-width ratio.

be the location of the imperfection element from the leading

edge of the plate and Branch I of the Blasius stability
curve.

e The most dangerous frequency in the presence of the roughness
element is not the same as that for the Blasius flow.

The present study needs to be extended by accounting for:

a. nonlinear effects (in view of the large growth rates
encountered in separation regions).

be

C.

nonparallel effects.

the effects of concave curvature (i.e., Gortler

instability).

de the receptivity to acoustic and free-stream disturbances.

e. the interaction between any of the instability mechanisms.

More experiments need to be conducted to provide detailed

measurements of the mean profiles, mode shapes, growth rates, etc. that
can be used to corroborate the theoretical results.
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Table I. Hump configurations in the experiments of

Walker and Greening

Number u h LT h*/b* Rm RT Bubble size

ft/sec in ft AR

I 82.6 0.031 4.58 0.0155 812 1346 00.0

2 69.4 0.0525 4.58 0.0263 830 1376 18.0

3 70.4 .0555 4.58 0.0278 860 1426 29.6

4 53.0 0.0620 4.58 0.0310 744 1234 25.7

5 56.2 0.0665 4.58 0.0332 764 1267 28.8

6 53.8 0.0700 4.58 0.0350 753 1249 36.1

7 78.0 0.0530 3.75 0.0265 904 1357 26.9

8 76.0 0.0555 3.75 0.0278 892 1337 32.5

9 61.5 0.0620 3.75 0.0310 803 1205 31.6

10 62.4 0.0630 3.75 0.0315 810 1215 34.5

II 55.5 0.0680 3.75 0.0340 761 1142 34.6

12 95.0 0.0525 2.92 0.0263 997 1319 32.6

13 70.0 0.0620 2.92 0.0310 860 1138 32.8

14 92.4 0.0620 2.08 0.0310 983 1098 49.9

Table 2. Dip configurations in the experiments of Walker and Greening

Number u h LT h*/b* Rm RT Bubble size

ft/sec in ft AR

I 76.4 -0.057 4.58 0.0285 894 1483 37.7

2 65.8 -0.067 4.58 0.0335 831 1377 41.6

3 82.7 -0.057 3.75 0.0285 930 1395 39.8

4 61.9 -0.067 3.75 0.0335 807 1210 36.5

5 84.9 -0.057 2.92 0.0285 943 1248 41.3

6 69.7 -0.067 2.92 0.0285 855 1132 39.0
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Table 3. Variation of the maximum N-factor and the location

at which N = 9 with the height of a quartic hump of
b* 2 b*

half-width i-_ = 2.274x10- (_- = 4.430) whose center
Lm

uL*
is at Rm = 975: a = 5 U

h* h* h*
L-_ _-- b--_ R9 Nmax

Bubble

length

AR

0

4.198xi0 -4

5.457x10 -4

8.395x10 -4

12.593x10 -4

0 0 1792 9.84 0

0.082 0.019 1779 I0.04 0

0.106 0.024 1750 10.25 0

0.164 0.037 1680 11.02 6.7

0.246 0.055 1552 12.67 22.1

Table 4. Correlation of the theoretical and experimental

results for the transition location for the

humps in Table 1

h*
Hump# h* b* Rm Separation RT NT FTXI06

in bubble AR

I 0.0310 0.0155 812 00.0 1346 10.03 20.0

2 0.0525 0.0262 830 18.0 1376 8.20 37.5

3 0.0555 0.0278 860 29.6 1426 9.09 35.0

4 0.062 0.0319 744 25.7 1234 7.95 40.0

5 0.0665 0.0333 764 28.8 1267 8.70 37.5

6 0.0700 0.0350 753 36.1 1249 9.10 40.0

7 0.0530 0.0265 904 26.9 1356 8.30 37.5

8 0.0555 0.0278 892 32.5 1337 8.19 35.0

9 0.0620 0.0310 803 31.7 1205 7.90 45.0

10 0.0630 0.0315 810 34.5 1215 8.00 42.5

11 0.0680 0.0340 761 34.6 1142 7.85 45.0

12 0.0525 0.0263 997 32.0 1319 9.20 35.0

13 0.0620 0.0310 860 32.8 1138 7.40 45.0

14 0.0620 0.0310 983 49.9 1098 9.00 55.0
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Table 5.

Dip# -h*

Correlation of the theoretical and experimental results for

the transition location for the dips in Table 2

h Rm Separation RT NT FTXl06
b

bubble AR

I

2

3

4

5

6

0.057 0.0285

0.067 0.0335

0.057 0.0285

0.067 0.0335

0.057 0.0285

0.067 0.0335

894 37.7 1483 9.2 30

831 41.6 1377 8.9 35

930 39.8 1395 8.31 35

807 36.5 1210 7.5 40

943 41.3 1248 7.3 45

855 39.0 1132 6.69 50
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Figure 3.
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Figure 4. Variation of streamwise velocity profiles along the plate
for hump No. 14 in Table i. The hump is centered at
X_/L* = I.O(R = 983), h*/b* = 0.031, b*/L* = 0.1.



Figure 5.
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Figure 6. Variation of the eigenfunction of hump No. 14 in Table 1

along the plate at frequency F = 55 x 10-6 .
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